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Abstract. QuanNm states which evolve cyclically in their projective Hilbert space give rise 
to a geomevic (or Aharonov-Anandan) phase. An aspect of primary interest is stable cyclic 
behaviour as realized under a periodic Hamiltonian. The problem has been handled by use of 
timedependent transformations M e d  along the lines of Floquet's themy as well as in terms 
of exponential operatos with a goal to examine the vaiety of initial states exhibiting cyclic 
behaviour. A particular case of special cyclic initial stares is described which is shown to be 
important for nuclear magnetic resonance experiments aimed at the study of the effects of the 
geometric phase An example of arbitrary spin j in a precessing magnetic field and spin j = 1 
subject to both axially symmelric quadrupolar interaction and a precessing magnetic field are 
presented. The invariant (Kobe's) geometric phase is calculated for special cyclic states. 

1. Introduction 

The discovery of the adiabatic topological phase by Berry [I] initiated intense interest, 
which has grown in recent years. Aharonov and Anandan 121 generalized Berry's result 
to a geometric phase associated with closed evolution paths in projective Hilbert space. 
Essentially, a connection was drawn between a quantum mechanical observable and the 
topological structure embedded in a Hilbert space. Recently, Anandan [3] presented a 
geometrical formulation of quantum mechanics principles. This can be regarded as an 
alternative picture of quantum mechanics providing a different outlook for a variety of 
quantum effects. Due to the general nature of the geometric approach, it allows for analogy 
to theories such as quantum field theory [4]. At the same time it provides for easily 
visualizable models, such as the generalized Bloch sphere [SI. 

The most popular approach in the study of the geometric phase addresses the evolution 
under a Lie algebraic Hamiltonian [MI. In this case the compact version of the projective 
Hilbert space can be generated, spanned by raising-lowering operators of the given algebra. 
This approach provides us with direct geometric insight. However, from the viewpoint 
of specific quantum mechanical calculations the applicability of this method is restricted 
to low-rank algebras since the Schrodinger equation is converted to a system of nonlinear 
differential equations. These become intractable for algebras of higher rank. 

Another approach has been formulated by Moore 191 for evolution under a periodic 
Hamiltonian. The coordinate system implanted into the projective Hilbert space is 
represented by a unitary matrix. Cyclic trajectories are given by periodic matrices S( t ) ,  the 
existence of which follow from Floquet theory. The computational aspects are somewhat 
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less critical for this approach since the problem can be reduced to an eigenproblem 
for a Floquet Hamiltonian in a procedure that can be regarded as a version of Fourier 
transformation for the Schrodinger equation [lo]. Nevertheless, the method faces difficulties 
in practical applications, and analytic results can be obtained only for a limited number of 
Hamiltonians. 

In the present analysis we relax the periodicity condition imposed on the Flcquet matrix 
S‘(t).  As shown below, this is of convenience in the treatment of certain systems and 
therefore expands the boundaries of Floquet formalism in geometric phase studies. In the 
particular case when the Hamiltonian is periodic and belongs to the SU(2)  algebra, it allows 
a direct connection to be drawn between the Lie algebraic and Floquet approaches. At the 
same time, the price paid for the ease of calculation is the loss of the gauge potential 
formulation for the geometric phase. 

The paper is organized as follows. In section 2 we present the classification of cyclic 
initial states (CIS) for the general case of finite-dimensional systems subject to periodic 
Hamiltonians. In section 3 the example of an arbitrary spin j in a precessing magnetic field 
is treated. In section 4 we examine the case of j = 1 subject to a precessing magnetic field 
and axially symmetric quadrupolar interaction. Generalization to arbitrary spin j is also 
presented. 

N R Skrynnikov er a1 

2. Cyclic behaviour of quantum states 

Consider the evolution of a quantum system as given by 

IW” = u(t’)l*.(o)). (1) 

Taking the eigenvectors of U@’) as the initial states Iq(O)), we can verify that the evolution 
during the period of time t‘ is cyclic, giving rise to a multiplicative phase factor. Thus, 
I$r(O)) are cyclic initial states. This cyclic behaviour, however, is not stable since it cannot 
be expected that the I@(O))’s remain eigenvectors of U ( t )  at times 2t‘. 3t’. . . . , nt’. Such 
unstable cyclic behaviour is not of interest in the study of the geometric phase; in contrast, 
stable cyclic behaviour is the tacit primary target for geometric phase studies to date. 

Consider a quantum system described by the wavefunction w ( t )  which evolves under 
the periodic Hamiltonian H ( t  + r )  = H ( f ) .  A time-dependent transformation S-l(r), 

t q t )  = s-’(t)*(t)  (2) 

transforms the wavefunction to @(t),  which obeys the Schrodinger equation with an 
accordingly transformed Hamiltonian 8: 

where 14 satisfies the equation 

d 
S ( t ) 8  = H ( t ) S ( t )  - i-S(t). (4) 

At this point f? is required to be time-independent. Under this condition, equation (4) is 
identified as a system of linear homogeneous first-order differential equations with periodic 
coefficients which can be solved with respect to the elements of S(t) .  According to 

dr 
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Floquet theory, the fundamental mahix g ( t )  composed of linearly independent solutions 
of equation (4) can be represented as [ I l l  

&t) = &t)eiQr (5) 

where G(t) is periodic, G(f + r )  = G(t ) ,  and 4 is constant and diagonal. Therefore, it 
follows that the set of solutions given by equation (5) is characterized by the periodicity 
property 

(6) S(t + T) = S(t)e'9T 

where q is the eigenvalue of Q, 
The significance of Floquet's results is that we can always find a solution S(t)  leading 

to a time-independent Hamiltonian, H ,  in a form which satisfies the criterion (6). Using 
equations (2) and (3) the form of evolution operator U ( f )  can be specified 

* ( t )  = U(f)*(O) (7) 

~ ( t )  = ~ ( t ) i r ( t ) ~ - ' ( ~ )  = S(t)e-'"S-'(O). (8) 

It should be noted that the transformation S( t )  can be chosen as non-unitary, giving 
rise to a non-Hermitian operator f? (cf equation (4)), with the proviso that the evolution 
operator (8) must be unitary. We confine ourselves, however, to the case of unitary S(t) ,  
so that the resulting fi is Hermitian and can be interpreted as an effective Hamiltonian. 

The above results can be compared with those due to Moore [9, lo]. In  his work, 
Moore made use of Floquet theory in order to construct the following representation for the 
evolution operator U ( f ) :  

~ ( t )  = S'(t)e-"'' (9) 

where H' is constant, S'(t) is unitary and periodic, S'(t+r) = S'(t),  and S'(0) = I .  Hence, 
$0) is a matrix of time-dependent tmnsformation which is subject to more restrictive 
requirements than those given by equation (6). 

Now we embark on the construction of cyclic initial states (CIS) starting from 
equation (8). Following Moore [12], the first type of CIS is based on the set 
of eigenvectors of H :  

Using equations (8) and (6) we can verify that qi(0) are indeed CIS obeying 

*,W = exp(irp.(r))Wo) (12) 

cp,(r) = -inr - iln((i(")Is(t)s-'(0)[ib))). 

where 

(13) 

Since S(a) is taken to be unitary, which holds for any time f ,  it follows from equation (6) 
that the second contribution on the RHS of equation (13) is real. Similarly, the eigenvalues 
of the Hermitian fi are real, and, hence, the overall phase pn(r) given by equation (13) is 
also real. The case when f? contains degeneracies was heated by Moore 1121. 
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The result for the geometric phase stems from the expression given by Aharonov and 
Anandan [2 ] :  

(14) 
d 

B f W  = vn(Q + i ~ ' ( W t ) I $ W O )  dt. 

Using equations (8) and (13). one obtains 

( 1 3  @(t) = -iln((i(")lS(s)S-'(O)I~("))) + i 
This class of CIS (equation (12)) always exists providing that the system in question is 
finite-dimensional. Thus, we can refer to the CIS V:(O) as natural cyclic states (ncls). 

Now we investigate an alternative choice for CIS, which, although subject to more 
restrictive requirements, nevertheless are important for practical analyses of spin- j systems. 
First, consider the diagonalizing unitary transformation R: 

d 
( i ( " ' l S - ' ( t ) - ~ ( t ) l i ( " ' ) d t .  Lr dt 

R (16) fi(t) =e-  iAt = R-le-iit 

and demand for the certain time, T, that 

i,,,~ = &T + 2 n ~ , ~  (17) 

for all allowed values of m and k. Here Nmr specifies a matrix of arbitrary integers. Under 
these conditions it can be seen that e(t) at r = T is reduced to a phase-shift operator: 

6 ( T )  = exp(-i$T)Z (18) 

where Z is the identity. Notice, that the index m of L,,, is taken as a convention and can be 
replaced for any allowed value m = k .  

The criterion (17) is equivalent lo K - 1 independent conditions, where K is the 
dimensionality of Hilbert space. We can regard these conditions as imposed on a set 
of parameters (T} @ (hit, where {hi) is a set of parameters which characterizes the 
Hamiltonian B. 

If conditions (17) are met, the evolution operator taken at t = T can be reduced to 

U ( T )  = exp(-iE;,T)S(T)S-'(O). (19) 

Secondly, it is required that 

s(t")s-'(t') = f(t" -t') 

implying the property of invariance with respect to time translation. With equation (20) 
it is straightforward to show that U ( T )  commutes with U(2T),  . . . , U(nT)  and, therefore. 
gives rise to stable cyclic behaviour. 

The eigenvectors of S(T)S-'(O) can then be chosen for the role of CIS, viz 

S(T)s-'(o)lz"') = pmlz(m)) (21) 

QL(0) = lz"') (22) 
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Similarly, with S ( t )  being a unitary operator, we find the overall phase p,(T) to be real. 
The geometric phase is derived by use of equation (14) as 

~ , O ( T )  = -X,T - iin((z(")lS(T)S-'(O)Iz(")) + (z("')~Blz(~))~ 

Since the criteria for @;(O) being CIS are stringent (equations (17) and (20)). we shall 
designate them as special cyclic initial states (scrs). It was pointed out [12] that time- 
independent Hamiltonians can give rise to CIS of this type. Here we formulated the 
conditions for the existence of SCIS under a general periodic Hamiltonian. It is shown 
below that the SCIS are of primary importance for the problem of a spin j in a precessing 
magnetic field. 

3. Spin j in a precessing magnetic field 

The transformation S(t)  can be found by solving equation (4). which is essentially equivalent 
to solving the original Schrodinger equation for the system under consideration. However, 
for the problem of a spin in a precessing magnetic field, a rotating-frame transformation can 
be recognized as a realization of S(t) .  This belongs to a class of 'cranking transformations' 
as described by Wang 113,141. 

The Hamiltonian for a spin exposed to a precessing magnetic field is 

H ( t )  = WoI, + 01 [I, cos(ot + 4) + Zy sincot + @)I (26) 

which by use of the rotating-frame transformation in the form 

S ( t )  = exp[-i(of + $J)ZJ (27) 

is transformed to 

B = A I , + o l I ,  (28) 

where A = 00 - o, and the period of H ( t )  is r = 27r/o. 
Using the properties of exponential operators [IS] we can represent Ei as 

Ei = exp(-isI,)nr, exp(i8zy) (29) 

where 

e =tan-' (?) (30) 

(31) 

This is known as a doubly rotated frame transformation. Consequently, the evolution 
operator is represented by 

u(t) = exp[-i(ot +@)Iz] exp(-i.91y) exp(-iC2eIz)exp(i.9Zy)exp(i@I,). (32) 
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On the basis of equations (11) and (29) ncls are identified as 
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$:CO) = exp(-i@Z,) exp(-i@Z,)lm) (33) 

the overall phase is 

q,,,(r) = -2nm 1 + - (34) ( 3 
&(r)  0 = -2nm(l -cos@) = -2nm ( 1 - - 3 . 

and the geometric phase is found to be 

(35) 

The ncls of spin j in a varying magnetic field have been described in numerous works 
[S, 13.14.161, and a similar situation has recently been detailed in [17]. Other authors [le] 
address the problem without specifying the form of the CIS. Our definition of nCIS differs 
from that used in these works by the factor exp(-i@Zz). Expression (35) recovers the results 
of Wang [13,14] and Cui [S, 161. 

Proceeding with the analysis of the geometrical meaning of p z ( r ) ,  using equations (32) 
and (33) and rearranging the result, the expression for evolving ncIs is found: 

W:(t )  = exp[-im(nt + or + @)](exp[-i(ot + @)Zz]exp(-i@Iy) exp[i(or + @)ZJ]lm). 

(36) 

This is recognized to be a spin coherent state representation [6] with the operator in braces 
allowing for the standard mapping onto the two-sphere Sz = SU(Z)/U(l) = S0(3)/S0(2). 
The representing vector is found to precess in a cone of angle 0 around the z-axis at angular 
frequency o (see figure 1). Hence, the evolution path is specified by the pair of angles (0, or) 
and Sz is a realization of the projective Hilbert space. The geometric phase (35) is m times 
the solid angle enclosed by the trajectory, which is a well known result. 

Figure 1. The evolution of nns as represented in the projective space S2. 
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Consider now the sCIS. It can be seen immediately that the rotating-frame 
transformation (27) meets the requirement of translational invariance (20). Eigenvalues 
of f?, xm, are found from equation (29) to be 

X, = mn. 

Thus, the conditions (17) are 

(37) 

mRT = (m + 1)QT +2nN,,,+1 m = - j ,  - j  + 1 , . . . , j -  1 (38) 

which can be satisfied by a proper choice of T .  The minimum T is T = 2 r / n  and the 
operator 

follows from equation (27). 
Thus the SCE are represented in the general case by the Im) basis states, 

@;,CO) = Im). (40) 

Notice, that if additional restrictions are placed on the parameters of the Hamiltonian, 
specifically, requiring that w and R are commensurable, i.e. w = nQ, then the set of SCIS 
is given by a variety of arbitrary initial states. 

The overall and geometric phases for SCIS (equation (40)) are obtained as 

V, (T)  = -2nm (1 +E) n (41) 

A geometrical interpretation is also available on the basis of equation (32). Taking Sz as a 
projective space, we can see that the evolution of the vectors representing scrs is given by 
a superposition of two rotations. One rotation is around the z-axis and the second is around 
the axis oriented as specified by the angles (0, c). The trajectories are shown in figure 2. 
The geometric phase (42) preserves its meaning as m times the solid angle enclosed by 
these spiral trajectories [19]. 

It is appropriate to analyse here the dimensionality of projective Hilbert spaces. Page 
[20] and Bouchiat and Gibbons I211 propose versions of the projective space described by 
2K - 2 real parameters, where K is the dimensionality of Hdbert space. In the situation 
when the dynamics of the system is described within a framework of Lie algebra, there 
is a ,projective Hilbert space of dimensionality W - 3 available, where W and 3 are the 
dimensionalities of Lie algebra and its Cartan subgroup, respectively [6-81. For the problem 
in question this is S2 of dimensionality two. It follows from the present analysis, however, 
that under favourable circumstances the dimensionality of projective Hilbert space can be 
reduced further. For the case under consideration the projective Hilbert space is one- 
dimensional, S' being parametrized by a single angle (at). This should be regarded as 
a consequence of the coordinate singularity inherent in SU(2).  Construction of compact 
realizations of projective Hilbert space is, we believe, a key point in the calculation of 
geometric phases for specific quantum mechanical systems. 
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. ,  . ,  
Figure 2. The evolution of scts as represented in the projective space S2. ( 0 )  The evolution 
curve for one period T. o/n = 2.2. (b)  The evolution curve far two periods T. o/n = 2.2. 
Self cross section poinls shown by these  curve^ correspond to the cycles of evolution, which 
CM he characterized as unstable. If the ratio ru /Q  is given by an irrational number, each of 
these cycles oecurs only once for an infinitely long evolution. 

Flgum 3. ”k evolution of scls in the ‘rotated frame’ of [SI as represented in the projective 
space 9. 

To the best of our knowledge, SCIS for the problem in question were investigated only by 
Layton etal in their paper 151. Analysis of (51, however, involves a transformation which is 
referred to as a ‘rotating-frame transformation’. The problem of geometric phase invariance 
under time-dependent unitary transformations was originally posed and explored by Kobe 
[22]. Recently, it was discussed by Kendrick I231 and Liang and Muller-Kirsten [24]. 
It was demonstrated that the geometric phase is invariant under time-dependent unitary 
transformations which are properly defined by equations (2H4). At the same time, the 
transformation of the Hamiltonian (4) alone, without the corresponding transformation of 
the wavefunction (2), breaks the Schrijdinger equation and, therefore, changes the dynamics 
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of the system, giving different results for the overall and geometric phases [24]. This type 
of partial transformation was invoked in the analysis of 151, which is equivalent to setting 
S ( t )  = 1 in equation (2) and, consequently in equation (39). With this choice, the class of 
sCIS is expanded to a whole variety of initial states, and the trajectory is depicted as a closed 
loop (see figure 3). The results for the geometric phase for the state Im) then becomes 

(43) 

This result was obtained for the state I - j )  in [5] and can be compared with ow 
expression (42) for the state Im). 

The difference between equations (42) and (43) requires a comment from the viewpoint 
of practical nuclear magnetic resonance (NMR) where the spin response is recorded in a 
rotating frame. The concept exploited by experimental NMR is different from that used 
here. In the former case it implies that the phase accumulated by a canier wave of an NMR 
receiver is subtracted from the observable phase accumulated by a density matrix element. 
This is not the origin of the difference between equations (42) and (43). 

4. Spin j = 1 subject to an axially symmetric quadrupole interaction in a pmessing 
magnetic field 

Spin j = 1 as an example of a system exhibiting geometric phase effects was investigated 
by Bouchiat and Gibbons [Zl]. These authors elaborated the parametrization for CIS with 
the parameters allowing for a geometrical interpretation. It was also demonstrated how a 
timedependent unitary transformation can be used to construct a variety of Hamiltonians 
and associated CIS starting from a particular Hamiltonian with known CIS (cf equations (2) 
and (4)). Following this, Bouchiat [25] examined the adiabatic Berry's phase exhibited by 
a j = 1 system subject to a quadrupolar interaction. The non-Abelian adiabatic phase for 
spin j = 

The present treatment is believed to be the first calculation of the non-adiabatic geometric 
phase for a spin system evolving under a Hamiltonian containing terms that are quadratic in 
spin operators. We consider the case of an axially symmetric quadrupolar interaction with 
its symmetry axis directed along the static component of the precessing magnetic field. A 
good example of such a w e  is found in typical N M R  experiments performed on a pair of 
dipolar coupled spins of 1 in a liquid crystalline environment [27]. The Hamiltonian' is 
given by 

was recently treated by Kwon et al [26]. 

H ( t )  = W I ,  + 01 [ I ~  cos(ot + 4) + lY sin(wt + $11 + oQ(I: - $ E )  (44) 

Using the where OQ is a quadrupolar coupling constant and E is the identity. 
transformation (27), I? is obtained as 

I;= AI,+o,I ,+ .uQ(I: -+E) .  (45) 

The eigenvalues of the Hamiltonian I? are given by a cubic equation 1281: 

(46) 3 h - a h - b = O  
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with 
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a = A' +U: + $06 
b = IO 2A2 - - 1,2 

3 Q( 9 Q) 

which leads to the eigenvalues 

An = 2 ( ~ / 3 ) ~ / ~ c o s [ f  cos-'(c) + 2(n + l)n/31 

c = ;(3/u)"*(b/a) 

(n = -1,O, 1) (47) 

and eigenvectors 

1 X-I ( n )  - - - -Ol ( fO~-h , -kA) fP  

x:) = [(;ma - A.)' - A21/P 

f i  

ol(fWg - A n  - A)/P 
1 xl"' = _- 
JZ 

P 2 -  - O ~ [ ( S %  2 I -An)' + A'] + [(fq -A,)' - A*]'. 

w~(o) = exp(i#zz)1dn)). (49) 

Applying the procedure presented in section 2, the nus are given by 

Then the overall phase accumulated during the period r = is found to be 

p&) = -2n 1 + - ( 3 
Likewise, the geometric phase is calculated from equation (15). giving 

In the limit of OQ = 0 this result reduces to equation (35). 
Calculation of phases for SCJS starts with 

Ok(0) = Im). (52) 

The conditions (17) read as 

In terms of NMR it can be identified as the generalized Hartmann-Hahn match condition. 
The relationship 

A-I + Ao + A I  = 0 (54) 
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is also invoked, thereby yielding 

12zI A-] = -- 
3 T  

12x1 2 x k  h=--+- 
3 T  T (55) 

12nZ 2 z ( l + k )  
3 T  T 

AI = -- - 

with 

1 = -(2N-10 + N o ! ) .  

The period T and the Hamiltonian parameters necessary to meet the conditions (53)  can 
now be determined. The cubic equation (46) gives 

L l A o  f A o A 1  + LlAl = -a 

A - ~ J + i l  = b. 

Combining equations (55) and (56) yields 

I 
3 

A2+ W: + -U; = - 
(57) 

1 2 x 3  
WQ A - - w 1 - - u 2  =-- ( .) 18(y) l ( l - 3 k ) ( 3 k - 2 1 ) .  

These equations generate surfaces in the four-dimensional parameter space (A,  01, WQ, T J ,  
Intersections of the two surfaces give a variety of {Ac, w;, mf2. T C J ,  which give rise to the 
SCIS. Rearranging equations (57) gives 

(581 
[l - 3 k / l +  3(k/1)’J3 

(1 - 3k/ l ) ’ (3k/ l  - 2)’ 

(AZ +U:  + JWQ) 1 2 3  

= 12 
OQ( A’- L O 2  2 1 - I SWQ) * 2 

and 

zZ(1- 3k/1) (2  - 3 k / l )  A’ + 0: + T = -  
3 [l - 3 k / l +  3(k / l ) ’ ]  WQ(A’ - - 4.;)’ (59) 

Equation (58) imposes the restriction on the set {A‘,OJ;,~GJ. whereas equation (59) 
determines T in terms of (Ac,wf ,w6J.  Since k and L are arbitrary integers, it would 
appear that by taking k + CO and 1 + 03 we shall be in a position to satisfy equation (58) 
for arbitrary values of A ,  01, WQ. However, it would also lead to T + CO. In practice, 
condition (58) can easily be met by proper choices of k and 1 and adjustment of the 
experimental parameters A and W I .  

Consider now the calculation of phases. The overall phase is found from equations (55) 
to be 
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where 1 and T are fixed in accordance with equations (58) and (59). 
In order to calculate the geometric phase (equation (25)), we apply to the Hamiltonian 

A, the diagonalizing transformation as determined by its eigenvectors (48). Performing the 
integration and using equations (53) results in the following expression: 

& ( T )  = -- - mwT + mAT + (m2 - +)UQT 

N R Skrynnikov et a1 

G 2al 
3 

This can be simplified by requiring 

k l l 6  (0, -;, -11 (62) 
(see equations (5.9). In this way, the last term of equation (61) is reduced to 
(~m, ,m, ,m" l~$ ) IZ lx$n) lZ )mT.  These results are consistent with those in section 3 for the 
limiting case of OJQ = 0. Conditions (58) and (59) introduce singularitis in this case which 
are, however, easily handled, so that the result (42) is recovered. 

Equation (61), along with equations (48), give the geometric phase for j = 1. T h i s  
calculation can be readily generalized for spins with j > 1. The overall phase for ncis is 
obtained as 

in agreement with equation (50) for j = 1, while the geometric phase is given by 

Thus !he problem is reduced to Ending the eigenvectors and eigenvalues of A for increasing 
values of j .  

In case of SCIS the complete system of linear equations for A-, , A-j+l, .  . . , Aj can be 
constructed in analogy to equations (53) and (54). leading to 

2n + -ki 
2 R 1  

L j + l  = -- 
T Z j + l  T 

... 

i 
Using these values of 4, we obtain, in analogy to equations (60) and (61). the phases as 

2Rl 
Z j  + 1 

pm(T) = -- - mmi' 

0 2Rl 
& ( T ) = - - - " w T + m A T + ( m Z - $ ) ~ T  

2 j  + 1 
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Since the eigenvalues are fixed by equations (65). the eigenvectors, x ( p )  in equation (67), 
can be found in analytical form by solving the corresponding system of linear equations. 

As expected, equations (65) lead to 2 j  conditions imposed on { A , o l , o ~ \  @ (T). 
However, 2 j  integers { I , k i )  can be interpreted as additional ( 2 j  - 1) continuous fitting 
parameters. 

In conclusion, the present analysis provides a basis for a theoretical description of NMR 
experiments aimed at elucidation of the geometric phase, such as the experiment due to 
Suter et al [29].  The cyclic evolution as realized in their experiment starts from a steady 
state of a fictitious spin-; system. Thus, the initial state can be described in terms I zk ;) 
vectors and, therefore, can be identified as SCIS, thereby giving a realizable example of their 
importance. The analysis presented in section 3 provides a theoretical basis for interpretation 
of Suter’s experiment, assuming that the spin j = 1 system can be heated as two fictitious 
spins i. This approach allows for a direct connection with the ‘solid angle’ geometric phase 
description. The results of section 4 can be used for more thorough analysis. We will defer 
a more detailed consideration of this experiment to a later publication. 
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